Assessment of Severe Apnoea through Voice Analysis, Automatic Speech, and Speaker Recognition Techniques

نویسندگان

  • Rubén Fernández Pozo
  • José Luis Blanco Murillo
  • Luis A. Hernández Gómez
  • Eduardo López Gonzalo
  • José Alcázar Ramírez
  • Doroteo Torre Toledano
چکیده

This study is part of an ongoing collaborative effort between the medical and the signal processing communities to promote research on applying standard Automatic Speech Recognition (ASR) techniques for the automatic diagnosis of patients with severe obstructive sleep apnoea (OSA). Early detection of severe apnoea cases is important so that patients can receive early treatment. Effective ASR-based detection could dramatically cut medical testing time. Working with a carefully designed speech database of healthy and apnoea subjects, we describe an acoustic search for distinctive apnoea voice characteristics. We also study abnormal nasalization in OSA patients by modelling vowels in nasal and nonnasal phonetic contexts using Gaussian Mixture Model (GMM) pattern recognition on speech spectra. Finally, we present experimental findings regarding the discriminative power of GMMs applied to severe apnoea detection. We have achieved an 81% correct classification rate, which is very promising and underpins the interest in this line of inquiry.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Early Detection of Severe Apnoea through Voice Analysis and Automatic Speaker Recognition Techniques

This study is part of an on-going collaborative effort between the medical and the signal processing communities to promote research on applying voice analysis and Automatic Speaker Recognition techniques (ASR) for the automatic diagnosis of patients with severe obstructive sleep apnoea (OSA). Early detection of severe apnoea cases is important so that patients can receive early treatment. Effe...

متن کامل

Design of a Multimodal Database for Research on Automatic Detection of Severe Apnoea Cases

The aim of this paper is to present the design of a multimodal database suitable for research on new possibilities for automatic diagnosis of patients with severe obstructive sleep apnoea (OSA). Early detection of severe apnoea cases can be very useful to give priority to their early treatment optimizing the expensive and time-consuming tests of current diagnosis methods based on full overnight...

متن کامل

Severe Apnoea Detection using Speaker Recognition Techniques

The aim of this paper is to study new possibilities of using Automatic Speaker Recognition techniques (ASR) for detection of patients with severe obstructive sleep apnoea (OSA). Early detection of severe apnoea cases can be very useful to give priority to their early treatment optimizing the expensive and timeconsuming tests of current diagnosis methods based on full overnight sleep in a hospit...

متن کامل

Effect of voice disguise on the performance of a forensic automatic speaker recognition system

This paper presents first results of an ongoing study on the effects of common types of voice disguise, including increased voice pitch (even falsetto speech), lowered voice pitch and pinching the nose while speaking, on forensic speaker recognition (FSR) techniques. Natural and disguised speech data from 100 German speakers recorded 5 times over a period of 7 to 9 months were used in a series ...

متن کامل

Speaker Adaptation in Continuous Speech Recognition Using MLLR-Based MAP Estimation

A variety of methods are used for speaker adaptation in speech recognition. In some techniques, such as MAP estimation, only the models with available training data are updated. Hence, large amounts of training data are required in order to have significant recognition improvements. In some others, such as MLLR, where several general transformations are applied to model clusters, the results ar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • EURASIP J. Adv. Sig. Proc.

دوره 2009  شماره 

صفحات  -

تاریخ انتشار 2009